TiO₂ Chloride Process

--

part and the second

General Process

Overview

Chlorination

Condensation

TiCl₄ Purification

TiCl₄ Oxidation

1st Dust Treatment

TiO₂ Chloride Process

www.ti-cons.com

Overview

2nd Dust Treatment

Offgas Treatment

TiO₂ Chloride Process

Version: 190329

Advantages and Disadvantages of Chloride Process compared to Sulfate Process

TiO₂ Chloride Process

Advantages

- Continuous Process:
 - Good prerequisites for optimization of quality and utilization
 - Direct and stable process control
- Better product quality regarding the optical and chemical properties
- In general, the production costs are lower, but in depends on the special circumstances
- Less environmental impact due to less waste
- Less man power necessary

Disadvantages

- Higher safety requirements due to the use of Cl2, CO and TiCl4
- Higher degree of automation necessary
- Higher requirements to the qualification of the staff
- Requires stable production environment and infrastructure
- Because of the closed loop the process is more sensitive to production short-fall

Raw Materials

Ore:

- The higher the TiO2 content, the lower is the loss of chlorine and the amount of by-products
- The content of Ca and Mg has to be low
- The mechanical stability of the particles should be high
- The content of radioactive impurities should be low

Coke:

- Content of sulphur, hydrogen and water should be low
- The mechanical stability of the particles should be high

Typical Consumptions - 1

Number	Name	Unit	Quantity [Unit/tTiO ₂]
1	Electricity	kWh	360
2	Steam	t	0.5
3	Oxygen	Nm ³	350
4	Nitrogen	Nm ³	100
5	Compressed Air	Nm ³	40
6	Clean Compressed Air	Nm ³	2
7	Chlorine	kg	350
8	Fuel Gas	GJ	2.3
9	Refrigerant	t	0.6
10	Coke	kg	370
11	Slag	t	1.27
12	Toluene	kg	13

Overview

Typical Consumptions - 2

TiO₂ Chloride Process

State of the local division of the local div

Number	Name	Unit	Quantity [Unit/tTiO ₂]
13	NaCl	kg	8
14	NaOH 50 %	kg	25
15	Aluminum	kg	6.5
16	KCI	kg	0.05
17	Mineral Oil	kg	3.6
18	H ₂ O ₂ 30 %	kg	1.8
19	Scrubbing Agent	kg	2
20	Ca(OH) ₂	kg	500
21	Water	m ³	2.5
22	D-I Water	m ³	2.5
23	Makeup Cooling Water	m ³	4.5

www.ti-cons.com

Typical Plant

Project data

- 100.000 tpa TiO₂-Pigment
- 4 buildings:
 - Main Building
 - Bag Filter Building
 - Waste Treatment
 - Tank farm
- 196 static equipments
- 134 rotating equipments
- > 14 km of pipes
- > 1.000 isometric drawings

Overview

> 41.000 piping objects

Page 15 Version: 190329

www.ti-cons.com

Advantages of Ti-Cons CP Process TiO₂ Chloride Process

- Based on the most modern technology and equipment
- Sustainable technology regarding ressources and environment
- Best technology available
- Proven technology (2 running installations in China)
- Very detailled engineering ready for construction (>20.000 documents)
- Long experience in planing, commissioning and operation

